Lecture 3 - January 17

Math Review
Propositional Logic \& Predicate Logic

Announcement

- Lab released
+ tutorial videos
$\vee 2.5$ hairs $] \rightarrow \frac{\text { Book }}{L} \rightarrow$ Back. Zip
+ problems to solve
+ Study along with the Math Review lecture notes.

Logical Operator vs. Programming_Operator

p	q	$p \wedge q$	$p \vee q$
true	true	true	true
true	false	false	true
false	true	false	true
false	false	false	false

$\frac{\text { Snort-curcuit }}{\text { gescucution: }}$
(el) \&\& e?
\rightarrow if $\angle H S$ evaluates to F_{s} skip the evaluation of RH'S

(1)

$$
\bar{\tau}==-2
$$

(1) eucluatrs to (I) (2), (3) skipped overall: (F).
(2) $\bar{\imath}==12$
(1) eraluates (1) (2) axduates to (7)
(3) Skippad \hat{t}_{0} overall:
(F).

$$
\operatorname{int}[] a=\ldots
$$

Exercise Assume a.langth $==10$

\rightarrow does this property guard $a[\bar{\square}]$?
G No: witness: $\bar{\tau}=-2$
Exercises: Try other ordering of Gradduy conditions.

Implication \approx Whether a Contract is Honoured

$$
p \Rightarrow q \quad p \Rightarrow q \equiv 1 q \Rightarrow 7 p
$$

(1) Inverse: $\neg p \Rightarrow \neg q \frac{G i d A}{x>0 \wedge x} \Rightarrow 10 \Rightarrow$
(2) Converse: $f \Rightarrow p \quad y \geqslant 3 \vee y<5$
(3) Contrapositiv: $7 q \Rightarrow 7 p$
(1)
(Invare of Converse)
(3) (apply de de mapagal

Identiay

$$
\begin{array}{ll}
\text { tue } \Rightarrow P \equiv P & 0+\tau=\bar{\tau} \\
\text { twe } \wedge P \equiv p & \mid * \tau=\tau \\
\text { fabe } \vee P \equiv P &
\end{array}
$$

Zeno

$$
\begin{aligned}
& \text { fake } \Rightarrow P \equiv \text { Tme } \\
& \text { false } \wedge P \equiv \text { falbe } \\
& \text { twe } \vee P \equiv \text { twe }
\end{aligned}
$$

Predicate Logic: Quantifiers

for each τ_{3} if $\bar{\tau}$ satisfies R, then P is satisfied (implecitys, if no such \bar{i} satistites R_{s} there's at least one $\bar{\tau}$, then \forall is T) sit. τ is in the range and τ satisfies P. (Tupticetly, of no such τ satisfies R_{3} then \exists is F)

